Reverse engineering the “normativity” in machine learning: A rule-based modelling of data-driven decisions for contestation

➢ Normativity: the key to theorize transparency

Theorising transparency with a view to see automated decision systems “at work” is a territory ever expanding as we attempt to map it.¹ The opacities, (in)transparencies and informational asymmetries inherent in machine learning (ML), resulting with a “mental invisibility” on the side of the individuals, may only be counteracted through a visibility of different type—namely, an actionable transparency² as an instrument to enforce rights. Based on this, what could follow Ruben Binns’s premise, "algorithmic decision-making necessarily embodies contestable epistemic and normative assumptions"³ is that, a systematisation of what transparency⁴ can offer for the contestation of automated decisions, rather requires an understanding of the system as a regulatory process—containing normativity in different forms, constructs and disguises.⁵

As decision-making systems are goal-oriented, their behaviour may be attributed to the inherent values and assumptions guiding their response to a given input.⁶ This allows us to infer certain normativity from the system’s output as aiming to achieve some pre-set goals. Hence with normativity, we not only refer to the capacity to control and guide conduct but also to a claim, or contention, to do so which is ultimately reducible to some moral ground—say, a right to rule.⁷ Since, by themselves, facts

¹ Emre Bayamlioğlu, Tilburg University / TILT. The author is deeply thankful to Mireille Hildebrandt and Ronald Leenes for their invaluable comments, academic guidance, and for all the good manners they teach.
⁵ For a general account of normativity, see Sylvie Delacroix, Legal Norms and Normativity: An Essay in Genealogy (Hart Publishing Limited, 2006).
(data) cannot provide "reasons for action", looking from the lens of normativity informs us about the motives, assumptions and the further decisional criteria underlying the systems, and thus, opens the way to a normative evaluation of the observed behaviour/action.\(^8\)

Accordingly challenging the truth claim or the accuracy of a decision, prescribing of “what ought to be” in a given situation, will initially require a conceptualisation of the outcome as a process based on facts, norms and decisions/effects in the most abstract sense. In the context of automated decisions based on personal data processing, this would simply imply how and why a person, event, or situation is classified in certain ways, and what consequences follow from that. Such modelling, which maps input/data with the effects/consequences within a contemplated normative framework, provides us with a rule-based “explanation” of the system which helps contextualise the decision at the appropriate level of generality for the purposes of contestation.\(^9\)

> A rule-based modelling of transparency: reverse engineering the implicit normativity

Following from above, a rule-based explanation will mean that given certain factual input, the result could be verified, justified, or alternatively contested with reference to a certain set of rules (normative framework) inherent in the system. Concrete transparency requirements of the rule-based modelling as an operable scheme enabling effective contestation of data-driven automated decisions will require clarities, verifications and justifications with regard to the below “informational components” of the system as a regulatory process—the transparency desiderata.

- Provided, observed and inferred data; data types; data structures; together with all the derived representations and inferences: factual input\(^11\)
 The core decisional features of the system as a regulatory process: decisional criteria (norms)
- The impact and context of the decision in a regulatory perspective
- The responsible actors (agency) behind the decisions or the benefits accrued

As a normative construct, the rule-based-modelling and the ensuing informational components do not aim to analyse the system by the mechanisms of its operation, but rather by the normativity embedded in its behaviour/action.\(^12\) Such modelling entails a more abstract and multi-layered conception of

\(^9\) As Coglianese and Lehr put it: […] in the rulemaking context machine learning would need to be nested within a larger decision-making model in order to support automated regulatory decisions. Machine learning predictions would, within an agent-based simulation, inform agents’ actions, which in turn would generate predicted outcomes from different regulatory permutations. Cary Coglianese and David Lehr, "Regulating by Robot: Administrative Decision Making in the Machine-Learning Era" (2017).

\(^10\) “Explanation” here is not limited to the concepts of technical analysis of AI-systems (e.g. local explanation or local counterfactual faithfulness) but rather used in the broader sense to refer to the efforts to render decisions of data-driven systems reviewable on normative grounds. For more on the concept of explanation, see Doshi-Velez, Finale, et. al. "Accountability of AI Under the Law: The Role of Explanation”.

\(^11\) Within this perspective, the concept of “data” is regarded not as a tool of insight, but simply as informational or factual input similar to the facts in a legal case. This is where the observations and the feedback in the form of data are transformed into factual input (constructed as representations of “reality”) for the system. What we intend to encapsulate by the concept of “factual input” is all the inferences and representations (“data derivatives”) which relate to the world/reality, and serve as the basis for the operation of decisional norms. The abstract concept of factual input is the product of the effort to differentiate between “rules of fact-making” and “rules of decision-making”. In the legal domain, decisions or judgments are reached, first, by the establishment of facts (in light of the relevant rules—akin to “constitutive rules”), and second, through the application of the norm (in light of the relevant facts). However, such distinction is difficult and questionable in the ML context. Will address this issue in the final part.

\(^12\) As Leenes clearly notes [...] in the case of automated decision making about individuals on the basis of profiles, transparency is required with respect to the relevant data and the rules (heuristics) used to draw the inferences. This allows the validity of the inferences to be checked by the individual concerned, in order to
transparency which equally takes into consideration both the outcome and the process itself. Rather than reflecting on the underlying algorithmic processes, it reverse engineers the decisional process for a reconstruction on the basis of facts, norms and the resulting effects; and by doing so, it employs a synthetic method aiming to acquire an understanding of the realit or the phenomenon by means of model-building.

The informational components (transparency desiderata) are intended as model-agnostic formulations which may not be seen as independent items of check but rather need to be implemented in a systemic way — treating each desideratum as an indispensable constituent of a framework which eventually aims to render automated decisions contestable on normative grounds.

To some extent, the idea here, is not to interpret the domain of ML through legal knowledge but to define legal requirements which would render the data-driven systems more responsive, communicative and engageable from the legal or regulatory perspective. Rule based modelling is not a top-down initiative ordering system owners and engineers how they should design their systems but rather a bottom-up call from the view of the informed data subject simply formulating what the totality of the data-driven activities entail for review and contestation.

- Impediments between facts and norms

As a theoretical construct, the rule-based modelling and the ensuing informational components draw the horizon of the desirable (but not necessarily the possible or the optimal) without any regard to the feasibility or technical, legal, or epistemological permissibility of these components. A viable implementation of the rule-based model requires a balancing of the trade-offs arising out of the impediments inherent to data-driven decisions, namely i) the legal limits: security, integrity and commercial secrecy; ii) the physical limits due to computational complexity; and iii) the economic feasibility in consideration of the risks. As such, each component needs implementation at various levels through different tools in a manner reconciling a balance among the risks, computational difficulties and the economic constraints—while also taking into account the legal and the systemic integrity concerns (e.g., to prevent competitors from reverse-engineering a particular scorer’s model or customers from gaming the smart grid). Since the ingredients and conditions of realization for each informational component may vary depending on the nature of the analysis together with its scope,
intensity, and duration; the appropriate tools and the necessary forms of transparency (e.g., notification/disclosure, audit and design principles) cannot not be detailed in the abstract but require further refinement in light of the specificities of the domain together with the context of the data operations in hand. Nevertheless, for the purposes of provocation, we may identify some preliminary theoretical gaps that are yet to be bridged.

As mentioned above, the rule-based modelling, which is intended as a normative reading\(^\text{17}\) of the totality of computational expression put forward by the system, treats data as input (stimuli) triggering certain operational processes followed by the effects in the form of classification/decision. Any regulator, whether it is in the realm of the law or within other normative/regulatory frameworks, will weigh various factors, and decide what norm should be applicable in case of a certain constellation of facts. Thus, our contestation model starting with the facts, secondly requires some normative understanding of the reasons giving rise to a particular decision. Take the example of a data-driven health insurance system which is constructed, among others, on the premise that eating deep-fried foods is an indicator of bad health. Based on the assumption that a deep-fried diet is the major cause of cardiovascular problems, the data analysis may decide that those searching for deep fryers through online retailing websites are in a risky category. Seen from the normative perspective, in automated decisions based on personal data processing, we can identify normativity primarily at two levels: first, for the determination of facts through inference rules/mechanisms (e.g. the assumed relation between the search for deep fryers and eating deep-fried), and the second, for the determination of the consequent effects (being classified as risky) based on the decisional norms embodied in the system. For instance, speech analysis in a micro-targeting campaign can detect one’s dialect and, irrespective of legal or ethical admissibility of such inquiry, dialect is a factual input accuracy or validity of which may be empirically challenged on the basis of first-order experience or other conventional verification methods. On the other hand, the selection of the suitable online political content based on this “factual” finding is the result of the decisional norm which should be regarded as distinct from the fact-generating mechanisms/rules used to infer one’s dialect.

Although theoretically every decision regarded as “rational” can be, albeit in varying abstraction, decomposed to infer which rules have been followed in what order; in case of automated decisions, facts and rules do not part or differentiate as easily as the way conventional lawyers are accustomed to. The formulation of the factual input may be so complex and unstructured that it may conflate the fact-generating inference process/rules and the decisional norms criteria. An example may be the detection of social relationship between persons based solely on acoustic and conversational characteristics. In a given speech analysis task, the degree of intimacy between the parties of a phone conversation may be the target variable to be predicted through a set of selected features. Accordingly, the relevant inference rule may provide that the length of silent pauses in a phone conversation is a predictor of intimacy between the parties (longer silent gaps during the conversation means more intimacy), resulting with the application of a certain decisional norm (e.g. discard calls with an intimacy score of “X” for surveillance purposes). Apparently, the intimacy between persons is not a kind of factual input like eating deep-fried food but rather more judgmental and value-laden characteristic, contestation of which would require a different argumentation.\(^\text{18}\) Similarly, we can think

\(^{17}\) In this context, Stiegler’s very concept of grammatization (as a theoretical framework for orienting rhetorical inquiry) may be a useful avenue for further inquiry. John Tinnell, "Grammatization: Bernard Stiegler's Theory of Writing and Technology" Computers and Composition 37 (2015): 132-46.

\(^{18}\) “[w]hile reasoning about the facts can (at least in principle) still be regarded as probabilistic, reasoning about normative issues clearly is of a different nature. Moreover, even in matters of evidence reliable numbers are usually not available so that the reasoning has to be qualitative.” Henry Prakken, ‘Logics of
of a college admissions process which, for example, take personal grit together with high school scores as the important factors for entry. Since grit cannot be measured or verified as the high-school grades, taking grit as input (calculating the *incalculable* with far too remote inferences) could be a way to conceal decisional norms.

The epistemological effort to keep decisional norms and rules behind factual inferences distinct is a key challenge in terms of articulating the embedded normativity inherent in the system. Leaving aside the inaccuracy of calculation, or the problem of passing spurious correlations as causation; refuting of a factual inference is one thing, and challenging of the decisional criteria which underlie a specific result is quite another. In ML context, even if we could identify certain rule-based factors affecting the decision, the problem lies in determining what it takes for a rule to be a decisional norm, and when we are faced with a rule of fact-making. This stands as a major difficulty in terms of differentiating between the inference rules (mechanisms) generating factual input and the decisional norms (criteria) interpreting the results according to the assumptions and legitimations relating to the wider objectives of the system in use.\(^{19}\) IN sum, ML is fraught with the problems of distinguishing between facts and norms—a case of *normativities* within *normativities*.

** **

So, the question remains: Is rule-based modelling a viable approach in that whether the contemplation and construction of automated decisions on the basis of facts, norms and effects could be enforced as a design choice? Whatever the chances of *ex-ante* implementation\(^ {20}\), there are always instances and situations where the normativity implicit in the system could not be articulated at a general level by a review of the system in the abstract. This is primarily because adaptive systems operate on dynamic correlation patterns where the decisional rule itself emerges autonomously from the streaming data. The “norm” is no longer predetermined, but constantly adjusted. Such *fluid hypotheses*\(^ {21}\) make any challenge on normative credentials of the system hard to formulate; thus, the decisional *criteria* remain vague and cannot be pinned down in sufficient precision. Rather than being based on factual identifications, categorizing through data could be seen as social procedures that initially create the groups they aim to define.\(^ {22}\) The so-called neutrality of data somehow naturalises this segmentation, and falsely renders its own construction—or say, normativity—invisible as a regulatory process.

Against this fuzzy entanglement of facts and norms in ML context, there are various efforts to develop methodologies and algorithmic tools explaining black-box models. An example of such efforts is the LiIME\(^ {23}\) project which aims to disclose the implicit rules behind predictions, while taking into account

\(^{20}\) [*…] we should acknowledge that to a large extent the methodological integrity of the machine learning requires advance specification of the purpose as this will inform the solidity and productivity of the relevant research design.* Mireille Hildebrandt, “Privacy as protection of the incomputable self: Agonistic machine learning”, 13.

\(^{23}\) **LIME** (**Local Interpretable Model-Agnostic Explanations**) is a “model induction” technique that experiments with any given machine learning model—as a black box—to infer an approximate explainable model. It primarily works on text classifiers.
the human limitations (e.g. the explanations should not be too long). The idea is to design an interpretable model by taking on the predictions of a supposedly uninterpretable (black-box) model. The tools for this purpose generally focus on the importance-measuring methods that operate on the individual level explaining what most important variables were for a specific result.

As a final remark, it is important to acknowledge that machine learning and the sphere of automated decisions are not monolith concepts, and they have bifurcated implications resulting with diversely harmful effects. The rule-based modelling deals with the type of harms which may be individually contested on normative grounds such as unfair treatment or due process violations. There also exist other methods for detecting and ameliorating various different types of harms—e.g., invasiveness, group-level harms, harms from economic manipulation or exclusionary practices, and last but not the least, societal harms such as disrespect to human dignity— which cannot be effectively challenged or remedied under an individual contestation scheme but require novel contemplations.

24 Marco Tulio Ribeiro, et. al., “Why should I trust you?: Explaining the predictions of any classifier” in Knowledge Discovery and Data Mining (KDD), 2016; Ross, Andrew Slavin, Michael C. Hughes, and Finale Doshi-Velez. "Right for the Right Reasons: Training Differentiable Models by Constraining Their Explanations" Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, 2017. For a similar “norm inference” approach, see Daniel Kasenberg et. al., “Norms, Rewards, and the Intentional Stance: Comparing Machine Learning Approaches to Ethical Training”. Also, see Marco Tulio Ribeiro’s blog. https://homes.cs.washington.edu/~marcotcr/blog/lime/